Regularity of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msub><mml:mrow><mml:mi mathvariant="fraktur">S</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msub></mml:math>-invariant monomial ideals

نویسندگان

چکیده

For a polynomial ring S in n variables, we consider the natural action of symmetric group Sn on by permuting variables. an Sn-invariant monomial ideal I?S and j?0, give explicit recipe for computing modules ExtSj(S/I,S), use this to describe projective dimension regularity I. We classify ideals I that have linear free resolution, also characterize those which are Cohen–Macaulay. then two settings analyzing asymptotic behavior regularity: one where look at powers fixed I, another vary ambient examine invariant induced In first case determine generated Sn-orbit single solving integer optimization problem. second any recovering recent result Murai.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Castelnuovo-Mumford regularity of products of monomial ideals

Let $R=k[x_1,x_2,cdots, x_N]$ be a polynomial ring over a field $k$. We prove that for any positive integers $m, n$, $text{reg}(I^mJ^nK)leq mtext{reg}(I)+ntext{reg}(J)+text{reg}(K)$ if $I, J, Ksubseteq R$ are three monomial complete intersections ($I$, $J$, $K$ are not necessarily proper ideals of the polynomial ring $R$), and $I, J$ are of the form $(x_{i_1}^{a_1}, x_{i_2}^{a_2}, cdots, x_{i_l...

متن کامل

castelnuovo-mumford regularity of products of monomial ideals

let $r=k[x_1,x_2,cdots, x_n]$ be a polynomial ring over a field $k$. we prove that for any positive integers $m, n$, $text{reg}(i^mj^nk)leq mtext{reg}(i)+ntext{reg}(j)+text{reg}(k)$ if $i, j, ksubseteq r$ are three monomial complete intersections ($i$, $j$, $k$ are not necessarily proper ideals of the polynomial ring $r$), and $i, j$ are of the form $(x_{i_1}^{a_1}, x_{i_2}^{a_2}, cdots, x_{i_l...

متن کامل

Intersections of Leray complexes and regularity of monomial ideals

For a simplicial complex X and a field K, let h̃i(X) = dim H̃i(X;K). It is shown that if X,Y are complexes on the same vertex set, then for k ≥ 0 h̃k−1(X ∩ Y ) ≤ ∑

متن کامل

Hypergraphs and Regularity of Square-Free monomial ideals

We define a new combinatorial object, which we call a labeled hypergraph, uniquely associated to any square-free monomial ideal. We prove several upper bounds on the regularity of a square-free monomial ideal in terms of simple combinatorial properties of its labeled hypergraph. We also give specific formulas for the regularity of square-free monomial ideals with certain labeled hypergraphs. Fu...

متن کامل

Monomial Ideals

Monomial ideals form an important link between commutative algebra and combinatorics. In this chapter, we demonstrate how to implement algorithms in Macaulay 2 for studying and using monomial ideals. We illustrate these methods with examples from combinatorics, integer programming, and algebraic geometry.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series A

سال: 2021

ISSN: ['0097-3165', '1096-0899']

DOI: https://doi.org/10.1016/j.jcta.2020.105307